

GaN HEMT器件的研究现状、特点及应用

Chi Xu

Mar, 2024

Agenda

- — Why GaN and GaN HEMT?
- ・二、GaN HEMT的发展历程和产业现状
- ・三、GaN HEMT的特点及应用考虑
- ・四、GaN HEMT的应用实例
- ・五、小结

Why GaN and GaN HEMT?

AC-DC, DC-DC & DC-AC power electronics across many EEs

GaN Basics

- The GaN FET is planar, vs. typical Si power FETs, which are vertical
- It is also called a HEMT, due to the High Electron Mobility channel or 2DEG
- The GaN layers are grown on a silicon substrate by MOCVD
- Field plates are used to optimize the E-field profile

Why GaN in hard-switching converters?

GaN Device Benefits

Why GaN in soft-switching converters?

- Reduced output capacitance Coss ٠
 - Reduces dead-time
 - Low transformer magnetizing current to minimize _ circulating current loss & eddy loss.
- Reduced turn-off overlap and gate driver losses ٠

- High power density in system
 - GaN enables higher f_{sw} to reduce magnetic components, and enables magnetic integration.

GaN HEMT的发展历程和产业现状

- GaN products covers EE applications widely
- GaN penetration is increasing in Automotive, Telecom & Infrastructure, Solar, and ESS
- GaN market is projected to reach \$2.04 billion by 2028;

GaN HEMT的特点及应用考虑

- High critical **electric field** in GaN enables a lateral structure for high voltage application
- Due to the Piezoelectric Effect in GaN/AlGaN layer, a high electron mobility is achieved
- Much smaller capacitance is achieved in GaN with the lateral structure
- No reverse recovery
- Fast switching speed

High Efficiency

High Frequency

High Power Density

Gate driver layout affects switching loss

Common Source Inductance (CSI)

- Slows V_{DS} transitions.
- Higher overlap losses (Hard-Switching).
- Longer dead-times (Soft-Switching).

Gate Loop Inductance

- Limit peak gate current: slow down gate drive and induce high overlap losses in hard switching.
- Gate overstress reliability risk.
- Miller shoot-through risk.

TI GaN Engineered for High-Frequency, Robustness

Integrated GaN FET, gate driver & more

- <1 nH common source inductance, <4 nH gate loop inductance
- on-chip V/I/T sensing, protections & reporting
- advanced power management features

Compact SMD package

- low parasitic lead inductance
- enhanced thermal management with top/bottomside cooling

Design simplicity & confidence

- demonstrated dV_{DS}/dt capability of 150 V/ns
- dV_{DS}/dt adjustable between 30-150
 V/ns for EMI vs efficiency
- compact PCB footprint

TI GaN engineered for high-frequency

 SMD (QFN) multi-chip module package offers lowest parasitic inductance for high frequency operation.

TI GaN Products

Top-Side Cooled Bottom-Side Cooled

LMG342x/352x: TI Gen II GaN Features

Robustness Highlight 1: Over Thermal Shutdown – Ideal **Diode Mode in AC Drop Test for PFC**

- **OTSD-IDM** ٠
 - When over thermal event is triggered: the FET will be automatically turned on when it detects the 3-rd quadrant current.

Robustness Highlight 1: Over Thermal Shutdown – Ideal Diode Mode in AC Drop Test for PFC

- LMG342X/352XR0X0 is turned ON when a reverse current is flowing from source to drain and thermal shut-down is encountered
- This behavior mitigates risk for thermal run-away and device failure

Robustness Highlight 2: Short Circuit Protection (SCP)

- Abnormal short circuit conditions are latched off for system intervention
- dl/dt used to differentiate between OCP & SCP modes

LMG342x/352x	50mΩ	30mΩ	Action
Over-Current Protection*	50A	70A	Cycle-by-Cycle
Short-Circuit Protection*	75A	95A	Latched-off
kštop		* Typical *	/alues [schedule, specs, features & pinouts subject to change without prior notice.]

Short Circuit Test at 400V

Robustness Highlight 3: TI GaN Qualification & Reliability Summary

Reliable in Power Supply

Intrinsically Reliable GaN

JESD47/AECQ100 device qualification

 Every GaN product qualified inside power supply running at high voltage/current /temp against charge trapping

- <1 FIT over 10-years at 125C, from
 1.8Mhours of reliability test data for
 time dependent breakdown
- Over 1 billion years switching lifetime under hard-switching against *hot-electron wear-out*

Lifetime

Robust by Design

- Designed to withstand 720V voltage surge
- Integrated over-current and overtemperature protection for every GaN FET

Dynamic Rdson

No avalanche? No problem!

Power Stage Design

- Parasitics
 - Inductance
 - Power Loop
 - Capacitance
 - Switching node
- Noise Coupling
 - Isolator/iso bias/PCB/heatsink
- Thermal Design
 - Top/Bottom Cooling
 - Heatsink/TIM

Why power loop layout is critical?

- Large Power Loop Inductance will
 - Increase ringing and cause EMI concerns
 - Increase voltage spikes
 - Induce noises causing signal integrity issue

 V_{sw} ringing versus power loop inductance red = 2nH, green = 5nH, blue = 10nH, orange = 20nH₉

Good practice for power loop layout

Good Practice Procedures

- Place GaN devices and decoupling capacitors close together.
- Use multiple ceramic decoupling capacitors with low-inductance.
- Vertical loop: use wide return path in the adjacent layer for inductance cancellation.

Parasitic Capacitance in Layout

Potential Problem

- GaN has small output capacitance. For example LMG3410R150 has only 68pF.
- A bad layout of 150mm² of switch node and ground overlap area can result in 51pF of additional switch node capacitance

Solution

- Minimize switch node overlap area.
- A good layout of 50mm² only results in 17pF of added capacitance

Noise Coupling

- High dv/dt switching can lead to common mode noise.
- Without good common mode transient immunity (CMTI), parasitic noise currents could cause malfunction of the driver
 - Missing pulse
 - Excessive propagation delay
 - High or low error
 - Output latch

电源工程师培训授证项目

Noise Coupling through Isolator

- The isolator's insufficient CMTI is causing the glitch at isolator output.
- Solutions:
 - Choose higher CMTI isolator
 - Isolator with default low output is preferred
 - An RC filter is recommend on the high-side isolator's output

电源工程师培训授证项目

Noise Coupling through Iso-Bias

- Large *C_{Iso Bias}* induces common-mode noise to signal ground and affects signals like fault feedback or PWMs.
- Solutions:
 - Low coupling capacitance in the transformer and PCB layout.
 - Add common mode choke.

system stops switching at high dv/dt

Noise Coupling through PCB

• Root cause: the switch node has overlap with the **control ground** and signals leading to capacitive coupling noises.

- No current in positive AC cycle
- LS GaN triggered fault

M 10.0m

• When LS GaN is turning on, HS PWM has a 1.8V noise causing shoot-through.

Check switch node coupling

- Root cause: the switch node has overlap with the **control ground** and signals leading to capacitive coupling noises.
- **Solution:** avoid signal tracing above or below the switch node plane unless the signals are referring to switch-node.

- No current in positive AC cycle
- LS GaN triggered fault

M 10.0m

• When LS GaN is turning on, HS PWM has a 1.8V noise causing shoot-through.

.

Check switch node coupling

- Root cause: the switch node has overlap with the **control ground** and signals leading to capacitive coupling noises.
- **Solution:** avoid signal tracing above or below the switch node plan unless the signals are referring to switch-node.

- No current in positive AC cycle
- LS GaN triggered fault

• When LS GaN is turning on, HS PWM has a 1.8V noise causing shoot-through.

noise coupling from switch node.Modified their layout and solved the

problem.

🜵 Texas Instruments

Noise Coupling through Cooling Plane

- Noise coupling through cooling:
 - Most GaN devices' exposed thermal pad is electrically connected to device's drain or source.
 - Capacitive coupling exists between the switchnode and signal ground or signals.

Push-Pins

Ways to reduce noise coupling to cooling plane

- Minimize the **traces** and **vias** in adjacent layers to cooling plane.
- Increase distance to cooling plane in certain area to reduce coupling capacitance.

 $C = \frac{\varepsilon \cdot A}{d}$

GaN FE

most traces in inner layers

Top-side Cooling

Noisy PWM Signals

PWM signals from the controller have large noises at high dv/dt operations

No shielding on the PWM traces from controller to GaN card: high *dv/dt* and *di/dt* noises are coupled to PWMs

Noise Issue at 100V/ns, 380V

PCB trace is cut Shielded wire is used

Operate Properly at 100V/ns, 380V

Good practices to maintain signals integrity

- **Signal Shielding:** all signals need to be shielded by its reference ground. Shielding is recommended for both the controller's outputs and the isolator outputs.
- Kelvin Signal Connection:
 - Avoid the noise area where high transient power passes through due to PCB trace impedance.
 - The quiet area with significantly less power transition is used for signal ground.

Signals traces with Ground Shielding

Quiet Area for Signal Ground

Thermal Design

Thermal via pattern

Via filled and plated

List of Thermal Interface Materials (Pad)

TIM Part #	Manufacturer	Thermal Conductivity (W/mK) on datasheet	Dielectric Strength (kV/mm)	Thickness (mm)
HD90000	Fujipoly	7.5	N/A	
GR80A	Fujipoly	8	8	
XLIM-HL	Sekisui	10	N/A	0.9 (after
GR130A	Fujipoly	13	7	nominal 1mm)
T-Work9000	LiPoly	20	8	
EI-20	Thermexit	20	7.8	

Methods of Thermal Improvement

Reduce power loss

- Reduce dead time, switching frequency etc
- Switch to lower $R_{\rm ds,on}$ if conduction loss dominates, or switch to higher $R_{\rm ds,on}$ if switching loss dominates

• Reduce R_{th-ja}

- Select higher thermal conductivity TIM
- Increase air speed
- Increase # of thermal vias if bottom cooled device
- Increase fin height in heatsink
- Change from AI to Cu heatsink
- Increase distance between GaN and other power loss components

GaN HEMT的应用实例

- Po = 1.8kW @ 180V, 1kW @ 90V
- fsw = 65kHz, Ta = 65°C, Air flow speed = 10m/s
- Topology: CCM totem pole PFC

CCM Totem-pole PFC

- Device selection
- Heatsink selection

Step 1: Select the proper TI GaN FET

- TI provides Power Loss Calculator XLS tools for CCM Totem Pole PFC Power Loss Calculation Excel Sheet
- In XLS tool, use the two configurations to compare different FETs for power losses and junction temperature
- It is important to select the right onresistance (R_{ds}) FET based on its power loss (for efficiency, thermals)
- Once the optimal FET is chosen, move to thermal design

Texas Instruments

Con: Inpu Out

		Configuration 1	Configuration 2		
	Configuration	CCM Totem Pole	CCM Totem Pole		
l	Select FET	LMG3422R030	LMG3422R050		J
	Select # of phase legs	1	1		
	R _{DS,ON}	35	55	mΩ	(maximum)
tant	R _{th, junction to case}	0.33	0.4	c/w	
t	Eon	69	41	uJ	(at zero current)
ut	E _{off}	0.05	0.05	uJ	
	AC V _{IN, RMS}	90	90	v	min: 50, max: 350
	DC V _{out}	400	400	v	min: 300, max: 450
	Switching Frequency	65	65	kHz	max: 2,200
	Deadtime	100	100	ns	min: 50
	Ambient Temperature	65	65	C	min: 25, max: 100
	Junction Temperature (T _j)	125	125	C	min: T _{amb}
	Slew Rate	100	100	V/ns	min: 30, max: 100, 1
	Max Output Power	1000	1000	w	min: 300, max: 7000
	Rth case to ambient	8.330	6.887	c/w	_
	R _{th} , junction to ambient	8.660	7.287	c/w	
	R _{DS,ON_temp}	0.063	0.099	Ω	
	Device Conduction Power Loss	4.049	6.363	w	(per device)
	Device Coss Power Loss	2.418	1.256	w	(per device)
	Overlap Power Loss	0.221	0.360	w	(per device)
	Deadtime Loss	0.176	0.210	w	(per device)
	Driver Loss	0.065	0.045	W	(per device)
	Total Loss per Device	6.928	8.233	W	
	Input RMS Current	11.338	11.338	А	
	Device Average Current	5.104	5.104	Α	

FET Selection Tradeoffs

- · Consider the trade-offs when selecting the FET
- Lower R_{ds} FET has lower conduction losses but higher switching losses
- The power losses between two FETs can be different at different load conditions, which depends on power level, switching frequency etc, the main reason is related to the proportion of conduction & switching losses
- In server/datacenter/telecom applications,
 - 50% load efficiency and nominal AC is the key spec so select FET based on this first.
 - But the thermal design of the chosen FET must support worst operating conditions, the max power at min Vin and max Ta.
 - If the thermal challenge is too difficult to solve, then choose a lower $R_{\rm ds}\,\text{FET}$

Thermal Check

- Target R_{th-ja} = 7.2°C/W
- Solderable heatsink is achievable

- Select LMG3422R050
- Solderable heatsink

🜵 Texas Instruments

Const Input Outp

	Configuration 1	Configuration 2	_	
Configuration	CCM Totem Pole	CCM Totem Pole		
Select FET	LMG3422R030	LMG3422R050		
Select # of phase legs	1	1		
R _{DS,ON}	35	55	mΩ	(maximum)
R _{th, junction to case}	0.33	0.4	c/w	
E _{on}	69	41	uJ	(at zero current)
E _{off}	0.05	0.05	uJ	
AC V _{IN, RMS}	90	90	v	min: 50, max: 350
DC V _{out}	400	400	v	min: 300, max: 450
Switching Frequency	65	65	kHz	max: 2,200
Deadtime	100	100	ns	min: 50
Ambient Temperature	65	65	С	min: 25, max: 100
Junction Temperature (T _j)	125	125	с	min: T _{amb}
Slew Rate	100	100	V/ns	min: 30, max: 100, 150
Max Output Power	1000	1000	w	min: 300, max: 7000
Rth. case to ambient	8.330	6.887	c/w	
R _{th, junction to ambient}	8.660	7.287	c/w	
R _{DS,ON_temp}	0.063	0.099	Ω	
Device Conduction Power Loss	4.049	6.363	w	(per device)
Device Coss Power Loss	2.418	1.256	w	(per device)
Overlap Power Loss	0.221	0.360	w	(per device)
Deadtime Loss	0.176	0.210	w	(per device)
Driver Loss	0.065	0.045	w	(per device)
Total Loss per Device	6.928	8.233	w	
			1	1
Input RMS Current	11.338	11.338	Α	

GaN HEMT的应用实例 – 3.6kW 1-ph totem-pole PFC stage

99.0 98.0

97.0

96.0

94.0

93.0 92.0 91.0

90.0

Design Features

- 230V AC input AC/DC stage of a >110W/in³ PSU for server/telecom
- PFC operates at 65kHz using only 2x 30mOhm GaN in top-side cooled package and 1x C2000 controller (F28002x / F28004x)
- **Baby boost architecture** allows for smaller hold up cap, higher density, and AC line drop out
- **Relay FET** can be smaller than traditional solution saving space on the board and increasing density

Design Benefits

230VAC (3.6kW

l oad I9

- > 180-W/in³ power density AC/DC stage
- Reduced size of heatsink and bulk capacitor
- Partners with other HV-LV DC/DC reference designs

Thank you

